71,769 research outputs found

    Resolving the virial discrepancy in clusters of galaxies with modified Newtonian dynamics

    Full text link
    A sample of 197 X-ray emitting clusters of galaxies is considered in the context of Milgrom's modified Newtonian dynamics (MOND). It is shown that the gas mass, extrapolated via an assumed β\beta model to a fixed radius of 3 Mpc, is correlated with the gas temperature as predicted by MOND (MgT2M_g \propto T^2). The observed temperatures are generally consistent with the inferred mass of hot gas; no substantial quantity of additional unseen matter is required in the context of MOND. However, modified dynamics cannot resolve the strong lensing discrepancy in those clusters where this phenomenon occurs. The prediction is that additional baryonic matter may be detected in the central regions of rich clusters.Comment: Submitted to A&A, 4 pages, 3 figures, A&A macro

    Time delay and integration detectors using charge transfer devices

    Get PDF
    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates

    Room-temperature ballistic transport in narrow graphene strips

    Full text link
    We investigate electron-phonon couplings, scattering rates, and mean free paths in zigzag-edge graphene strips with widths of the order of 10 nm. Our calculations for these graphene nanostrips show both the expected similarity with single-wall carbon nanotubes (SWNTs) and the suppression of the electron-phonon scattering due to a Dirichlet boundary condition that prohibits one major backscattering channel present in SWNTs. Low-energy acoustic phonon scattering is exponentially small at room temperature due to the large phonon wave vector required for backscattering. We find within our model that the electron-phonon mean free path is proportional to the width of the nanostrip and is approximately 70 μ\mum for an 11-nm-wide nanostrip.Comment: 5 pages and 5 figure

    The Formation of Galactic Disks

    Full text link
    We study the population of galactic disks expected in current hierarchical clustering models for structure formation. A rotationally supported disk with exponential surface density profile is assumed to form with a mass and angular momentum which are fixed fractions of those of its surrounding dark halo. We assume that haloes respond adiabatically to disk formation, and that only stable disks can correspond to real systems. With these assumptions the predicted population can match both present-day disks and the damped Lyman alpha absorbers in QSO spectra. Good agreement is found provided: (i) the masses of disks are a few percent of those of their haloes; (ii) the specific angular momenta of disks are similar to those of their haloes; (iii) present-day disks were assembled recently (at z<1). In particular, the observed scatter in the size-rotation velocity plane is reproduced, as is the slope and scatter of the Tully-Fisher relation. The zero-point of the TF relation is matched for a stellar mass-to-light ratio of 1 to 2 h in the I-band, consistent with observational values derived from disk dynamics. High redshift disks are predicted to be small and dense, and could plausibly merge together to form the observed population of elliptical galaxies. In many (but not all) currently popular cosmogonies, disks with rotation velocities exceeding 200 km/s can account for a third or more of the observed damped Lyman alpha systems at z=2.5. Half of the lines-of-sight to such systems are predicted to intersect the absorber at r>3kpc/h and about 10% at r>10kpc/h. The cross-section for absorption is strongly weighted towards disks with large angular momentum and so large size for their mass. The galaxy population associated with damped absorbers should thus be biased towards low surface brightness systems.Comment: 47 pages, Latex, aaspp4.sty, 14 figs included, submitted to MNRA
    corecore